Diastereoselective Ene Reaction of 3-Formyl- Δ^2 -isoxazolines

Akio KAMIMURA* and Akinori YAMAMOTO Department of Chemistry, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753

The ene reaction of 3-formyl- Δ^2 -isoxazolines proceeds smoothly in the presence of appropriate Lewis acid. An efficient 1,3-asymmetric induction takes place to give syn- and antihomoallyl alcohols in a stereoselective way.

The carbonyl-ene reaction ^{1}a) is one of useful carbon-carbon bond forming reaction. Recently, stereoselective methods using Lewis acid have been devised by several groups. Chelation and non-chelation control should be an important strategy of controlling stereochemistry on carbon-carbon bond formation under Lewis acid conditions. 3 Δ^{2} -Isoxazolines are useful synthetic intermediates because they can be readily converted into various important compounds such as β -hydroxy ketones or γ -amino alcohols. They also act as effective stereocontrolling elements because they have both relatively rigid ring conformation and coordinating heteroatoms which serve as a Lewis base. In this paper, we report that the ene reaction of 3-formyl- Δ^{2} -isoxazolines (1) achieves efficient 1,3 asymmetric induction under both chelation and non-chelation conditions.

OHC 1a Lewis acid,
$$CH_2CI_2$$
 Ph OH Ph OH syn-2a Ph OH anti-2a

The ene reaction of 3-formyl- Δ^2 -isoxazolines (1a) with α -methylstyrene was carried out (Eq. 1). The results are summarized in Table 1. Typical experimental procedures are as following: To a solution of 1a (1.5 mmol) and α -methylstyrene (3 mmol) in CH₂Cl₂ was added an appropriate Lewis acid at -78 °C or ambient temperature. The resulting mixture was stirred until 1a almost disappeared on TLC. After usual workup, the crude product was purified by flush column chromatography (silica gel/hexane-ethyl acetate 3:1) to give the ene adduct 2a.

Run	Lewis acid	(equiv.)	Temp/°C	Time/h	2a; Yield/%a)	syn-2a/anti-2ab)
1	SnCl ₄	(1)	-78	1	70	99.5/0.5
2	TiCl ₂ (Oi-Pr) ₂	2 (2)	r. t.	20	74	95/5
3	TiCl ₄	(1)	-78 - r. t.	24	trace	-
4	BF ₃ ·OEt ₂	(1)	-78 - r. t.	36	trace	-
5	Et ₂ AICI	(1.5)	-78	3	59	0/100 ^{c)}

Table 1. Diastereoselective ene reaction of 1a

a) Isolated yield. b) Determined by HPLC analyses (cosmosil 5-PYE column was used.). c) The minor isomer was not detected on HPLC analyses.

Several Lewis acids were examined as a reaction catalyst. For example, the reaction took place smoothly under the conditions catalyzed by SnCl₄ or TiCl₂(Oi-Pr)₂ to afford 2a in good yield (runs 1 and 2). The use of TiCl₂(Oi-Pr)₂ gave 2a in better yield than the use of SnCl₄. Due to weak Lewis acidity of TiCl₂(Oi-Pr)₂, excess amounts of Lewis acid and room temperature were necessary for the reaction (run 2). 250 MHz ¹H NMR spectra exhibited that these 2a consisted of an almost single isomer. Both TiCl₂(Oi-Pr)₂ and SnCl₄ gave the identical stereoisomer of 2a. The stereochemistry of the major isomer of 2a was found to be syn-2a in comparison of ¹H NMR spectra after its conversion to 3.7) The diastereomer ratios of 2a were determined by HPLC analyses on cosmosil 5-PYE column as shown in Table 1. The syn-selectivity of SnCl₄ is better than TiCl₂(Oi-Pr)₂ because the SnCl₄ catalyzed reaction proceeds at -78 °C. Other Lewis acids such as TiCl₄ and BF₃·OEt₂ afforded only trace amounts of 2a (runs 3 and 4). However, Et₂AlCl served as an effective Lewis acid for the reaction (run 5). Although the yield of 2a was not so high, the opposite stereoisomer, anti-2a, was formed under this condition exclusively. The stereoselectivity was very high because syn-2a was not detected on HPLC analysis. Thus, syn-2a and anti-2a can be prepared in stereoselective way by the choice of Lewis acids.

OHC
$$R^{1}$$
 Lewis acid, $CH_{2}CI_{2}$ R^{5} R^{4} $CH_{2}R^{5}$ R^{4} $CH_{2}R^{5}$ R^{4} $CH_{3}R^{4}$ R^{5} R^{4} CH_{4} R^{5} R^{4} CH_{5} R^{6} R^{7} R^{1} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{2} R^{3} R^{4} CH_{5} R^{4} CH_{6} R^{1} R^{2} R^{1} R^{2} R^{2} R^{3} R^{4} CH_{6} R^{4} CH_{7} R^{1} R^{2} R^{2} R^{3} R^{4} CH_{7} R^{2} R^{3} R^{4} CH_{7} R^{2} R^{3} R^{4} CH_{7} R

The reaction was applied to other kinds of 1 (Eq. 2). The results are summarized in Table 2. The choice of Lewis acid is important to get anti-2 or syn-2 in high stereoselective way. For example, the ene reaction to α -methylstyrene, isobutene, or methylenecyclohexane proceeded smoothly under the condition catalyzed by SnCl₄ to give syn-2 in good yield (runs 1, 4, 7, and 10). The syn-selectivity of SnCl₄ is usually better than 96/4. In some cases, anti-2 could not be detected under this reaction conditions (run 4). The syn-selectivity of TiCl₂(Oi-Pr)₂ is usually lower than that of

Table 2. The ene reaction of 1

Run	1	R ¹	R ²	R ³	R ⁴	R5	Lewis acid (equiv.) T	emp/°C	Time/h	2; Yield	_{I/%} a)	syn/anti ^{b)}
1	1 a	-(CH	12)3-	Н	Me	Н	SnCl ₄ (1)	-78	1	2 b	83	99/1
2	1 a	-(CH	12)3-	Н	Me	Н	TiCl ₂ (Oi-Pr) ₂ (2)	r. t.	48	2 b	35	94/6
3	1 a	-(CH	1 ₂) ₃ -	Н	Me	Н	Et ₂ AICI (1.5)	-78	1	2 b	19	25/75
4	1 a	-(CF	1 ₂) ₃ -	Н	-(CF	H ₂) ₄ -	SnCl ₄ (1)	-78	1	2c	93	100/0c)
5	1 a	-(CH	12)3-	Н	-(CH	•		-78	4	2c	13	37/63
6	1 b	Me	i-Pr	Н		Н	TiCl ₂ (Oi-Pr) ₂ (2)	r. t.	20	2 d	77	90/10
7	1 b	Me	i-Pr	Н	Ph	Н	SnCl ₄ (1)	-78	2	2 d	58	96/4
8	1 b	Me	i-Pr	Н	Ph	Н	Et ₂ AlCl (1.5)	-78	2	2 d	37	1/99
9	1 c	Ph	Н	Ph	Ph	Н	TiCl ₂ (Oi-Pr) ₂ (2)	r. t.	6	2 e	72	82/18
10	1 c	Ph	Н	Ph	Ph	Н	SnCl ₄ (1)	-78	2	2 e	59	96/4
11	1 c	Ph	Н	Ph	Ph	Н	Et ₂ AlCl (1.5)	-78	4	2 e	0	-
12	1 d	Н	Ph	Н	Ph	Н	$TiCl_2(Oi-Pr)_2$ (2)	r. t.	14	2 f	56	54/46
13	1 d	Н	Ph	Н	Ph	Н	Et ₂ AlCl (1.5)	-78	4	2f	26	47/53

a) Isolated yield. b) Determined by HPLC analyses (cosmosil 5-PYE column was used.). c) The minor isomer was not detected on HPLC analyses.

 $SnCl_4$ (runs 2, 6, and 9). On the other hand, Et_2AlCl usually afforded anti-2 in stereoselective way. The reaction to α -methylstyrene took place with high anti-selectivity to give almost pure anti-2 (run 8). However, the anti-selectivity fell to about 3:1 to 2:1 for the reaction to isobutene or methylenecyclohexane (runs 3 and 5). The reaction of 1c under Et_2AlCl condition did not give adduct 2e (run 11). These stereoselectivities were not observed in absence of the substituent on C^4 position of isoxazoline ring (runs 12 and 13).

The stereoselectivity of the reaction is attributed to chelation and non-chelation control. For example, $TiCl_2(Oi-Pr)_2$ and $SnCl_4$ likely coordinate on the oxygen atom of the formyl group and the nitrogen atom of Δ^2 -isoxazoline ring to form bicyclic complex as shown in Eq. 3. The olefin attacks from the opposite side of R^1 group to give syn-2 predominantly. On the other hand, Et_2AlCl catalyzed ene reaction proceeds via non-chelation conformation to give anti-2 preferentially (Eq. 4).

$$M = Ti, Sn$$

$$M = Ti, Sn$$

$$M = Ti, Sn$$

$$AI$$

$$M = Ti, Sn$$

$$AI$$

$$AI$$

$$AI$$

$$AI$$

$$AI$$

As the high stereoselectivity can be readily achieved by a facile manipulation,

this method provides a useful method for a carbon skeletons containing multi asymmetric centers.

References

- a) K. Mikami, T. Terada, M. Shimizu, and T. Nakai, Yuki Gosei Kagaku Kyokai Shi, 48, 292 (1990);
 b) B. B. Snider, Acc. Chem. Res., 13, 426 (1980);
 c) J. K. Whitesell, ibid., 18, 280 (1985).
- J. K. Whitesell, A. Bhattacharya, C. M. Buchanan, H. H. Chen, D. Deyo, D. James, C. -L. Liu, and M. A. Minton, Tetrahedron, 42, 2993 (1986); J. K. Whitesell, R. M. Lawrence, and H. -H. Chen, J. Org. Chem., 51, 4779 (1986); S. Sakane, K. Maruoka, and H. Yamamoto, Tetrahedron, 42, 2203 (1986); K. Mikami, T. -P. Loh, and T. Nakai, Tetrahedron Lett., 29, 6305 (1988); K. Maruoka, Y. Hoshino, T. Shirasaka, and H. Yamamoto, ibid, 29, 3967 (1988); K. Mikami, T. -P. Loh, and T. Nakai, J. Chem. Soc., Chem. Commun., 1430 (1988); K. Mikami, M. Terada, and T. Nakai, J. Am. Chem. Soc., 111, 1940 (1989); K. Mikami, M. Terada, and T. Nakai, ibid., 112, 3949 (1990); K. Mikami, K. Takahashi, and T. Nakai, ibid., 112, 4035 (1990); K. Mikami, T. -P. Loh, and T. Nakai, Tetrahedron Asymmetry, 1, 13 (1990); K. Mikami, M. Kaneko, T. -P. Loh, M. Terada, and T. Nakai, Tetrahedron Lett., 27, 3909 (1990).
- 3) M. T. Reetz, Angew. Chem., Int. Ed. Engl., 23, 556 (1984); M. T. Reetz, "Organotitanium Reagents in Organic Synthesis," Springer Verlag, Berlin (1986); T. Fujisawa and Y. Ukaji, Yuki Gosei Kagaku Kyokai Shi, 47, 186 (1989).
- 4) P. Caramella and P. Grünanger, "1,3-Dipolar Cycloaddition Chemistry," ed. by A. Padwa, John Wiley & Sons, New York, (1984), Vol. 1, p. 291; D. P. Curran, "Advanced in Cycloaddition," JAI Press Inc., Greenwich, Connecticut (1988); A. P. Kozikowski, Acc. Chem. Res., 17, 410 (1984); V. Jäger, H. Grund, R. Franz, and R. Ehrler, Lect. Heterocycl. Chem., 8, 79 (1985); K. B. G. Torsell, "Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis," VCH, Weinheim (1988).
- 5) a) A. Kamimura and S. Marumo, *Tetrahedron Lett.*, 31, 5053 (1990); b) P. A. Wade, D. T. Price, P. J. Carroll, and W. P. Dailey, *J. Org. Chem.*, 55, 3051 (1990).
- 6) A. Kamimura and T. Nishiguchi, submitted for publication.
- 7) ¹H NMR spectrum of 3 converted from syn-2a exhibited an identical spectrum of 3 which was made from TiCl₄ catalyzed aldol reaction of 1a followed by silylation.^{5a)}

(Received July 30, 1990)